0%

Redis在Docker中的数据持久化

项目Github地址:github/booklet

Redis 提供了两种不同的持久化方法来将数据存储到硬盘里面。一种方法叫快照(snapshotting,RDB),它可以将存在于某一时刻的所有数据都写入硬盘里面。

另一种方法叫只追加文件(append-only file,AOF),它会在执行写命令时,将被执行的写命令复制到硬盘里面。

这篇文章梳理了Redis两种持久化方法的知识点,并通过Docker + Docker-Compose进行环境的模拟,来进行数据的备份与恢复等操作。

至于测试数据,我通过一个python脚本批量录入三百万条key-value键值对(会消耗719.42M内存,来源于redis-cli info信息),没有python环境的同学,可以使用我在项目里准备的另一个shell脚本

python脚本代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# -*- coding: UTF-8 -*-
# file write.py
# author liumapp
# github https://github.com/liumapp
# email liumapp.com@gmail.com
# homepage http://www.liumapp.com
# date 2019/9/9
#
import redis

r = redis.Redis(host="127.0.0.1", port=6379, db=0, password="admin123")
print("开始插入三百万条数据,每10万条数据提交一次批处理")
with r.pipeline(transaction=True) as p:
value = 0
while value < 3000000:
print("开始插入" + str(value) + "条数据")
p.sadd("key" + str(value), "value" + str(value))
value += 1
if (value % 100000) == 0:
p.execute()

RDB

RDB持久化是通过创建快照来获得数据副本,即简单粗暴的直接保存键值对数据内容

要启用RDB(并关闭AOF),我们需要修改Redis的配置文件(./redis_config/redis.conf):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
requirepass admin123

save 60 1000
stop-writes-on-bgsave-error no
rdbcompression no
dbfilename dump.rdb

appendonly no
appendfsync everysec
no-appendfsync-on-rewrite no
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb

dir /data/

上述配置会通过docker-compose的配置,映射到Redis容器中并启用,具体在下面的实操中介绍

RDB配置说明

上述配置中与RDB相关的配置如下

  • save: 多久执行一次自动快照操作

    比如设置为 save 60 1000 ,那么就表示在60秒之内,如果有1000次写入的话,Redis就会自动触发BGSAVE命令

    一般来说,我们都会希望Redis可以有一个固定的周期来创建快照,那么可以这样设置

    900 1``` ,意思就是让Redis服务器每隔900秒,并且至少执行了一次写入操作后,就触发BGSAVE指令
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18

    * stop-writes-on-bgsave-error: 在创建快照失败后是否仍然继续执行写命令

    * rdbcompression: 是否对快照文件进行压缩

    * yes: 开启,这种情况下,Redis会采用LZF算法对rdb文件进行压缩

    * no: 关闭

    * dbfilename: 快照文件名

    * dir: 快照文件存放目录

    ### RDB触发条件

    RDB的触发条件会比AOF麻烦,大致可以分为以下几种:

    * 通过redis-cli等客户端直接发送指令: ```BGSAVE

    BGSAVE指令,会让Redis调用fork创建一个子进程在后台运行,子进程将会负责创建快照到磁盘中

    在演示案例中,启动redis的docker容器后,在redis-cli中输入 BGSAVE 后,能够在./redis_data目录下生成一个temp-17.rdb文件(或者其他以rdb结尾的)

  • 通过redis-cli等客户端直接发送指令:SAVE

    SAVE指令(注意跟配置中的save没有半毛钱关系),会让Redis主进程直接开始创建快照,但在创建快照的过程中,Redis不会响应其他命令请求

    在演示案例中,启动redis的docker容器后,在redis-cli中输入 SAVE 后,能够在./redis_data目录下生成一个temp-17.rdb文件(或者其他以rdb结尾的)

  • 通过配置项save进行触发

    具体请参照上文的参数说明

  • 通过SHUTDOWN命令关闭Redis服务器时,Redis会自动触发一个SAVE指令

  • 通过标准TERM信号kill掉Redis服务时,Redis也会自动触发一个SAVE指令

  • 通过Redis主从服务器的复制请求

    主服务器收到从服务器的复制请求时,会触发一次BGSAVE指令(当且仅当主服务器没有子进程在执行BGSAVE)

RDB-Docker实操

  • 通过docker-compose启动Redis容器

    docker-compose.yml配置如下

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    version: "2"
    services:
    redis:
    image: 'redis:3.2.11'
    restart: always
    hostname: redis
    container_name: redis
    ports:
    - '6379:6379'
    command: redis-server /usr/local/etc/redis/redis.conf
    volumes:
    - ./redis_config/redis.conf:/usr/local/etc/redis/redis.conf
    - ./redis_data/:/data/

    我将Docker容器中的redis服务所产生的备份文件,映射在宿主机的./redis_data目录下

  • 修改redis配置文件,使AOF生效,并关闭RDB

    这里将上面的redis.conf内容复制替换到./redis_config/redis.conf文件中即可

  • 启动redis服务,并观察redis_data目录下是否有dump.rdb文件生成,有生成,则证明备份成功

  • 数据恢复的话,我们不需要做其他操作,只要确保该dump.rdb存在,redis便会自动去读取其中的数据

AOF

AOF持久化会将被执行的写命令写到AOF文件的末尾,以此来记录数据发生的变化。因此,Redis 只要从头到尾重新执行一次AOF 文件包含的所有写命令,就可以恢复AOF文件所记录的数据集。

要启用AOF(并关闭RDB),我们需要修改Redis的配置文件(./redis_config/redis.conf)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
requirepass admin123

#save 60 1000
stop-writes-on-bgsave-error no
rdbcompression no
dbfilename dump.rdb

appendonly yes
appendfsync everysec
no-appendfsync-on-rewrite no
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb

dir /data/

上述配置会通过docker-compose的配置,映射到Redis容器中并启用,具体在下面的实操中介绍

AOF配置说明

上述配置中与AOF相关的配置如下

  • appendonly: 是否启用AOF

    • yes: 启用AOF

    • no: 关闭AOF

  • appendfsync: 启用AOF后的数据同步频率

    • alaways: 每个Redis写命令都要同步写入硬盘。这样做会严重降低Redis 的速度 (不建议)

    • everysec: 每秒执行一次同步,显式地将多个写命令同步到硬盘 (推荐,对性能没有太大影响)

    • no: 让操作系统来决定应该何时进行同步。(不建议)

      Redis将不对AOF文件执行任何显式的同步操作,如果用户的硬盘处理写入操作的速度不够快的话,那么当缓冲区被等待写入硬盘的数据填满时,Redis的写入操作将被阻塞,并导致Redis处理命令请求的速度变慢

  • no-appendfsync-on-rewrite:在对AOF进行压缩(也被称为重写机制)的时候能否执行同步操作

    • yes: 不允许

    • no: 允许

  • auto-aof-rewrite-percentage:多久执行一次AOF压缩,单位是百分比

  • auto-aof-rewrite-min-size:需要压缩的文件达到多少时开始执行

    auto-aof-rewrite-percentage跟auto-aof-rewrite-min-size需要配套使用,比如当我们设置auto-aof-rewrite-percentage为100,设置auto-aof-rewrite-min-size为64mb时

    redis会在AOF产生的文件比64M大时,并且AOF文件的体积比上一次重写之后至少增大了一倍(100%)才执行BGREWRITEAOF重写命令

    如果觉得AOF重写执行得过于频繁,我们可以把auto-aof-rewrite-percentage设置100以上,比如200,就可以降低重写频率

    这里可以参考Redis的官方手册,写的非常清楚:https://redislabs.com/ebook/part-2-core-concepts/chapter-4-keeping-data-safe-and-ensuring-performance/4-1-persistence-options/4-1-3-rewritingcompacting-append-only-files/

  • dir:备份文件存放目录

AOF触发条件

直接根据appendfsync的设置进行触发

AOF重写机制

在上面的配置中,已经通过auto-aof-rewrite-percentage和auto-aof-rewrite-min-size两个参数,简单介绍了Redis的BGREWRITEAOF重写命令

那么,为什么要用AOF重写机制呢?

因为AOF持久化是通过保存被执行的写命令来记录Redis数据库状态的,所以AOF文件随着时系统运行会越来越大

而过于庞大的AOF文件会产生以下不良影响

  • 影响Redis服务性能;

  • 占用服务器磁盘空间;

  • AOF还原数据状态的时间增加;

所以Redis提供了一套AOF重写机制,通过创建一个新的AOF文件来替换掉旧的AOF文件,这两个文件所保存的数据状态是相同的,但新的AOF文件不会包含冗余命令,所以体积会较旧AOF文件小很多

但在实际的使用中,我们需要非常小心,不能让Redis的重写命令执行的过于频繁 (注意:auto-aof-rewrite-percentage的单位是百分比,值越大,重写频率越低,也千万别出现0这种值) 因为BGREWRITEAOF的工作原理和BGSAVE创建快照的工作原理非常相似:Redis会创建一个子进程,然后由子进程负责对AOF文件进行重写,因为AOF文件重写也需要用到子进程,所以快照持久化因为创建子进程而导致的性能问题和内存占用问题,在AOF持久化中也同样存在

更具体的AOF重写工作原理:

  • Fork主进程,产生一个带有数据副本的子进程在后台执行

    Redis这样设计可以确保在重写过程中,不影响Redis主进程的服务正常运行,同时通过处理数据副本来保证数据的安全性(注意,重写是针对数据副本来进行处理,而不是针对旧的AOF文件)

  • 子进程Fork完成后,Redis将启用AOF重写缓冲区,此刻开始,新的写入命令会被写入AOF缓冲区和AOF重写缓冲区中

    这里启用的AOF重写缓冲区可以确保:在执行AOF重写的过程中,任何新的写入命令产生,都不会导致新AOF文件的数据状态与Redis数据库状态不一致

  • 子进程完成对AOF文件的重写后,通知父进程

  • 父进程收到通知后,将AOF重写缓冲区的内容全部写入新的AOF文件中

  • 父进程将新的AOF文件替换掉旧的AOF文件(注意,这一步会造成Redis阻塞,但问题不大)

BGREWRITEAOF的工作流程图如下所示(绘图源代码在项目的./articles/bgrewriteaof.puml文件下)

bgrewriteaof.png

AOF-Docker实操

  • 通过docker-compose启动Redis容器

    docker-compose.yml配置如下

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    version: "2"
    services:
    redis:
    image: 'redis:3.2.11'
    restart: always
    hostname: redis
    container_name: redis
    ports:
    - '6379:6379'
    command: redis-server /usr/local/etc/redis/redis.conf
    volumes:
    - ./redis_config/redis.conf:/usr/local/etc/redis/redis.conf
    - ./redis_data/:/data/

    我将Docker容器中的redis服务所产生的备份文件,映射在宿主机的./redis_data目录下

  • 修改redis配置文件,使AOF生效,并关闭RDB

    这里将上面的redis.conf内容复制替换到./redis_config/redis.conf文件中即可

  • 启动redis服务,并观察redis_data目录下是否有appendonly.aof文件生成,有生成,则证明备份成功

    另外我们可以发现,3百万条数据(700M)的备份文件,其实际占用磁盘空间约为170M,这便是Redis重写机制强大的地方

  • 数据恢复的话,我们不需要做其他操作,只要确保该appendonly.aof存在,redis便会自动去读取其中的数据

总结

RDB跟AOF都可以确保Redis的数据持久化,但各有特点

RDB因为有默认的指令SAVE跟BGSAVE支持,所以比较适合对数据库做全量备份,比如每天凌晨3点开始执行一次BGSAVE

而AOF因为是保存的写命令,因而更适合实时备份,事实上现在企业应用也基本都是采用的AOF

但光是使用了RDB或AOF、甚至两个一起用,也还是不够的

对于一个需要支持可扩展的分布式平台而言,我们还需要提供一套复制备份机制,允许在一个周期内,自动将AOF或者RDB的文件备份到不同的服务器下

这种情况下,我们就需要使用Redis的复制并生成数据副本功能,具体内容我会在下一篇文章进行实操记录

参考链接